A Stochastic Finite-Difference Time-Domain (FDTD) Method for Assessing Material and Geometric Uncertainties in Rectangular Objects

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient outdoor sound propagation modeling with the finite-difference time-domain (FDTD) method: a review

The finite-difference time-domain (FDTD) method, solving the inhomogeneous, moving medium sound propagation equations, also referred to as the Linearized Euler(ian) Equations (LEE), has become a mature reference outdoor sound propagation model during the last two decades. It combines the ability to account for complex wave effects like reflection, scattering and diffraction near arbitrary objec...

متن کامل

Numerical Assessment of Finite Difference Time Domain (FDTD) and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain (CE-ADI-FDTD) Methods

A thorough numerical assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain Methods has been carried out based on a basic single mode Plane Optical Waveguide structure. Simulation parameters for both methods were varied and the impact on the performance of both numerical methods is investigated.

متن کامل

Performance Evaluation of the Three-Dimensional Finite-Difference Time-Domain(FDTD) Method on Fermi Architecture GPUs

GPUs excel at solving many parallel problems and hence dramatically increase the computation performance. In electrodynamics and many other fields, FDTD method is widely used due to its simplicity, accuracy, and practicability. In this paper, we applied the FDTD method on the Fermi Architecture GPUs, the latest product of NVidia, for a better understanding of Fermi's new features, such as the d...

متن کامل

A Novel Scheme for High Performance Finite-Difference Time-Domain (FDTD) Computations Based on GPU

Finite-Difference Time-Domain (FDTD) has been proved to be a very useful computational electromagnetic algorithm. However, the scheme based on traditional general purpose processors can be computationally prohibitive and require thousands of CPU hours, which hinders the large-scale application of FDTD. With rapid progress on GPU hardware capability and its programmability, we propose in this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Technologies

سال: 2020

ISSN: 2227-7080

DOI: 10.3390/technologies8010012